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Palladium-catalyzed conjugate reduction of enones into
o,p-dideuterioketones with hexamethyldisilane and deuterium oxide
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Conjugated enones are reduced by readily available
Me;SiSiMe; and D,O in the presence of a catalytic amount
of [PACI(n*-C3Hs),-PPh; to give a,p-dideuterioketones.

Deuterated organic compounds are important for biological
research! and the elucidation of reaction mechanisms.> Among
the deuterium sources used for chemical transformations to
deuterated compounds, deuterium oxide is undoubtedly the most
inexpensive and easy to handle. In this context, we recently
reported the palladium-catalyzed reduction of alkynes to 1,2-
dideuterioalkenes using hexamethyldisilane and deuterium oxide
as a reductant and a deuterium source, respectively.® Here, we
report that the combination of a palladium catalyst, hexamethyl-
disilane and deuterium oxide is applicable to the conjugate
reduction of enones into o,B-dideuterioketones. There are some
precedents for the o,B-dideuteration of conjugated enones using
deuterium oxide as a deuterjum source.*> A plausible reaction
mechanism based on the experimental results, including that from
a stoichiometric reaction using an intermediate equivalent, is also
described.

We first examined the conjugate reduction of 1-phenyl-2-nonen-
1-one (1a) under essentially the same conditions as we used for the
reduction of alkynes, but at a lower temperature.® Thus, treatment
of 1a with hexamethyldisilane (2: 1.5 equiv.), D,O (10 equiv.),
[PACI(*-C5Hs)] (3: 5 mol% of Pd) and PPhs (10 mol%) in DMA
at 60 °C for 24 h gave 2,3-dideuterio-1-phenyl-1-nonanone (4a)
(eqn. (1) and Table 1, entry 1). More than one deuterium atom was
incorporated at both o~ (125%) and B- (120%) positions. The
overdeuteration of the a-position is probably due to acid-catalyzed
H-D exchange viz an enol form of product 4a,® whereas that of
the B-position is caused by H-D exchange of enone la before
reduction. The actual deuterium ratios of recovered la at 63%
conversion were 2% (o) and 29% (B).® How the H-D exchange at
the B-position takes place will be discussed later. The deuteration
was found to be applicable to various conjugated enones having
aliphatic and/or aromatic substituents on the alkene and carbonyl
carbons (Table 1).I Substitution on the benzene rings of the
chalcon with an electron-donating or -withdrawing group did not
inhibit the reaction, except for a CF; group on the 1-phenyl
group of the chalcon, which resulted in moderate yields (Table 1
entries 4-9).
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1 Electronic supplementary information (ESI) available: Synthesis,
characterisation data and NMR spectra of the deuterated compounds
prepared. See DOI: 10.1039/b618107d
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Table 1 Palladium-catalyzed conjugate reduction of enones to
o, B-dideuterioketones”

Deuterium ratio®

Entry R! R? Yield (%)” o (-d) B (-d)
1 Hex Ph 82 12512 1.202
2 i-Pr Ph 93 14412 11372
3 CI(CH,); Ph 85 15612 1172
4 Ph Ph 81 1212 1.022
5 4-MeOCgH, Ph 86 1312 1.092
6 4-CF4C¢Hy Ph 85 1352 0972
7 Ph 4-MeOC¢H, 92 14512 1.052
8¢ Ph 4-Me,NCgH,4 95 1.58/2  0.96/2
9 Ph 4-CF5C¢H, 69 1312 1.052
10 Ph Me 92 1.56/2  0.98/2
11 Pent Me 80 1.05/2  1.06/2
12 Ph (E)-Styryl 81 3.22/4¢  2.00/4¢

“ The reaction was carried out in DMA (0.50 mL) at 60 °C for 24 h
under a nitrogen atmosphere using enone (0.40 mmol), Me;SiSiMes
(0.60 mmol) and D,O (4.0 mmol) in the presence of [PdCl(n’-
C3Hs)]> (10 pmol) and PPh; (40 pmol). © Isolated yield based on the
enone. ¢ D/(D + H) determined by '"H NMR. ¢ Reaction time = 48
h. ¢ Both of the double bonds are deuterated.

In our report on the palladium-catalyzed silylation of alcohols
with 2,7 it was shown that 3 is transformed into PdH(CI)(PPhs),
(5)° as a catalytically active complex by treatment with 2 and an
alcohol in the presence of PPh;, and that the Si-Si bond of disilane
2 is cleaved with ROH in the presence of hydridopalladium
catalyst 5 to give MesSiH (6a) and Me;SiOR. In the present
dideuteration system, where D,O is used in place of ROH,
deuteridopalladium PdD(CI)(PPh;), (5-d), Me;SiD (6a-d) and
MesSiOD should be generated in place of hydridopalladium 5,
hydrosilane 6a and Me;SiOR, respectively. Thus, we are tempted
to consider that 5-d catalyzes the dideuteration of enones 1, with
6a-d as a reductant, with the aid of D,O, as shown in eqn. (2).
Actually, the combination of 5 (5 mol%) and PhMe,SiD (6b-d:
3.0 equiv.), instead of 5-d and 6a-d, in the presence of D,O
(10 equiv.), worked effectively in the conjugate reduction of 1a at
60 °C for 24 h to give 4a in 76% yield (o: 1.47/2-d, B: 1.05/2-d).

We investigated the reaction mechanism based on eqn. (2).
Deuteriopalladation of enone 1 with D-Pd-Cl 5-d, giving
B-deuterio-o-palladioketone 7, is probably the first step
(Scheme 1). The corresponding hydropalladation of alkenes is a
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well known process,lo but it is difficult to observe a-palladioketone
7 because of the facile reverse reaction, p-hydride elimination.'!
The H-D exchange at the B-position of enone 1 prior to the
reduction (vide supra) is possibly ascribed to a series of reactions
initiated by deuteriopalladation (Scheme 1). Thus, (a.S*BR*)-7,
generated by the deuteriopalladation, undergoes a 1,3-Pd shift,
giving palladium enolate 8. The reverse 1,3-Pd shift to the opposite
side, followed by B-hydride elimination, gives B-deuterioenone 1-B-
d via (oR* pR¥)-7.12

Next, we examined which of the remaining substrates, 6a-d and
D0, reacts with o-palladioketone 7. We used a less volatile
deuteriosilane, PhMe,SiD (6b-d), and a more stable a-palladioke-
tone, Pd(CH,COPh)CI(PPhs), (7'), '* which is free from p-hydride
elimination. o-Palladioketone 7' was intact upon treatment with
D,O (rt, 1 h), whereas 6b-d readily reacted with 7’ in the presence
of 1,8-bis(dimethylamino)naphthalene (10: 3.0 equiv.)'* to give
silyl enolate 9a in 63% yield (eqn. (3)).

MeN  NMe,
o
PhaF" )_ph _ (10:3.0 equiv.)
% —_—
Cl-Pd e E“MEZS’D DMF-d,, rt, 1h
PhsP 7' 6b-d
(3)
SlMezPh
g _>_ph + >¥Ph
9a
1H NMR 63% 20% 2%

a-Deuterioacetophenone (11), a major by-product, was probably
produced by the reaction of 9a with 5-d, generated during the
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Scheme 2

formation of 9a. The reaction of 7' with 6b-d in the presence of
DO and the absence of 10 gave 11 (58%, along with 10% of 12)
but not 9a. A plausible overall catalytic cycle is shown in Scheme 2.
Deuteriopalladation of 1 gives o-palladioketone 7, which is in
equilibrium with palladium enolate 8. Palladium complex 7 and/or
8 reacts with 6a-d to regenerate 5-d and give silyl enolate 9,'° which
undergoes deuteriolysis under slightly acidic conditions to give
a,B-dideuterioketone 4.

In conclusion, we have disclosed a new dideuteration method
for conjugated enones using readily available deuterium oxide as
the deuterium source, a palladium complex as the catalyst and
hexamethyldisilane as the reductant.
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