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Conjugated enones are reduced by readily available

Me3SiSiMe3 and D2O in the presence of a catalytic amount

of [PdCl(g3-C3H5)]2–PPh3 to give a,b-dideuterioketones.

Deuterated organic compounds are important for biological

research1 and the elucidation of reaction mechanisms.2 Among

the deuterium sources used for chemical transformations to

deuterated compounds, deuterium oxide is undoubtedly the most

inexpensive and easy to handle. In this context, we recently

reported the palladium-catalyzed reduction of alkynes to 1,2-

dideuterioalkenes using hexamethyldisilane and deuterium oxide

as a reductant and a deuterium source, respectively.3 Here, we

report that the combination of a palladium catalyst, hexamethyl-

disilane and deuterium oxide is applicable to the conjugate

reduction of enones into a,b-dideuterioketones. There are some

precedents for the a,b-dideuteration of conjugated enones using

deuterium oxide as a deuterium source.4,5 A plausible reaction

mechanism based on the experimental results, including that from

a stoichiometric reaction using an intermediate equivalent, is also

described.

We first examined the conjugate reduction of 1-phenyl-2-nonen-

1-one (1a) under essentially the same conditions as we used for the

reduction of alkynes, but at a lower temperature.3 Thus, treatment

of 1a with hexamethyldisilane (2: 1.5 equiv.), D2O (10 equiv.),

[PdCl(g3-C3H5)]2 (3: 5 mol% of Pd) and PPh3 (10 mol%) in DMA

at 60 uC for 24 h gave 2,3-dideuterio-1-phenyl-1-nonanone (4a)

(eqn. (1) and Table 1, entry 1). More than one deuterium atom was

incorporated at both a- (125%) and b- (120%) positions. The

overdeuteration of the a-position is probably due to acid-catalyzed

H–D exchange via an enol form of product 4a,6 whereas that of

the b-position is caused by H–D exchange of enone 1a before

reduction. The actual deuterium ratios of recovered 1a at 63%

conversion were 2% (a) and 29% (b).6 How the H–D exchange at

the b-position takes place will be discussed later. The deuteration

was found to be applicable to various conjugated enones having

aliphatic and/or aromatic substituents on the alkene and carbonyl

carbons (Table 1).{ Substitution on the benzene rings of the

chalcon with an electron-donating or -withdrawing group did not

inhibit the reaction, except for a CF3 group on the 1-phenyl

group of the chalcon, which resulted in moderate yields (Table 1

entries 4–9).

ð1Þ

In our report on the palladium-catalyzed silylation of alcohols

with 2,7 it was shown that 3 is transformed into PdH(Cl)(PPh3)2

(5)8 as a catalytically active complex by treatment with 2 and an

alcohol in the presence of PPh3, and that the Si–Si bond of disilane

2 is cleaved with ROH in the presence of hydridopalladium

catalyst 5 to give Me3SiH (6a) and Me3SiOR. In the present

dideuteration system, where D2O is used in place of ROH,

deuteridopalladium PdD(Cl)(PPh3)2 (5-d), Me3SiD (6a-d) and

Me3SiOD should be generated in place of hydridopalladium 5,

hydrosilane 6a and Me3SiOR, respectively. Thus, we are tempted

to consider that 5-d catalyzes the dideuteration of enones 1, with

6a-d as a reductant, with the aid of D2O, as shown in eqn. (2).9

Actually, the combination of 5 (5 mol%) and PhMe2SiD (6b-d:

3.0 equiv.), instead of 5-d and 6a-d, in the presence of D2O

(10 equiv.), worked effectively in the conjugate reduction of 1a at

60 uC for 24 h to give 4a in 76% yield (a: 1.47/2-d, b: 1.05/2-d).

We investigated the reaction mechanism based on eqn. (2).

Deuteriopalladation of enone 1 with D–Pd–Cl 5-d, giving

b-deuterio-a-palladioketone 7, is probably the first step

(Scheme 1). The corresponding hydropalladation of alkenes is a
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Table 1 Palladium-catalyzed conjugate reduction of enones to
a,b-dideuterioketonesa

Entry R1 R2 Yield (%)b

Deuterium ratioc

a (-d) b (-d)

1 Hex Ph 82 1.25/2 1.20/2
2 i-Pr Ph 93 1.44/2 1.13/2
3 Cl(CH2)3 Ph 85 1.56/2 1.17/2
4 Ph Ph 81 1.21/2 1.02/2
5 4-MeOC6H4 Ph 86 1.31/2 1.09/2
6 4-CF3C6H4 Ph 85 1.35/2 0.97/2
7 Ph 4-MeOC6H4 92 1.45/2 1.05/2
8d Ph 4-Me2NC6H4 95 1.58/2 0.96/2
9 Ph 4-CF3C6H4 69 1.31/2 1.05/2
10 Ph Me 92 1.56/2 0.98/2
11 Pent Me 80 1.05/2 1.06/2
12 Ph (E)-Styryl 81 3.22/4e 2.00/4e

a The reaction was carried out in DMA (0.50 mL) at 60 uC for 24 h
under a nitrogen atmosphere using enone (0.40 mmol), Me3SiSiMe3

(0.60 mmol) and D2O (4.0 mmol) in the presence of [PdCl(g3-
C3H5)]2 (10 mmol) and PPh3 (40 mmol). b Isolated yield based on the
enone. c D/(D + H) determined by 1H NMR. d Reaction time = 48
h. e Both of the double bonds are deuterated.
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well known process,10 but it is difficult to observe a-palladioketone

7 because of the facile reverse reaction, b-hydride elimination.11

The H–D exchange at the b-position of enone 1 prior to the

reduction (vide supra) is possibly ascribed to a series of reactions

initiated by deuteriopalladation (Scheme 1). Thus, (aS*,bR*)-7,

generated by the deuteriopalladation, undergoes a 1,3-Pd shift,

giving palladium enolate 8. The reverse 1,3-Pd shift to the opposite

side, followed by b-hydride elimination, gives b-deuterioenone 1-b-

d via (aR*,bR*)-7.12

Next, we examined which of the remaining substrates, 6a-d and

D2O, reacts with a-palladioketone 7. We used a less volatile

deuteriosilane, PhMe2SiD (6b-d), and a more stable a-palladioke-

tone, Pd(CH2COPh)Cl(PPh3)2 (79), 13 which is free from b-hydride

elimination. a-Palladioketone 79 was intact upon treatment with

D2O (rt, 1 h), whereas 6b-d readily reacted with 79 in the presence

of 1,8-bis(dimethylamino)naphthalene (10: 3.0 equiv.)14 to give

silyl enolate 9a in 63% yield (eqn. (3)).

ð3Þ

a-Deuterioacetophenone (11), a major by-product, was probably

produced by the reaction of 9a with 5-d, generated during the

formation of 9a. The reaction of 79 with 6b-d in the presence of

D2O and the absence of 10 gave 11 (58%, along with 10% of 12)

but not 9a. A plausible overall catalytic cycle is shown in Scheme 2.

Deuteriopalladation of 1 gives a-palladioketone 7, which is in

equilibrium with palladium enolate 8. Palladium complex 7 and/or

8 reacts with 6a-d to regenerate 5-d and give silyl enolate 9,15 which

undergoes deuteriolysis under slightly acidic conditions to give

a,b-dideuterioketone 4.

In conclusion, we have disclosed a new dideuteration method

for conjugated enones using readily available deuterium oxide as

the deuterium source, a palladium complex as the catalyst and

hexamethyldisilane as the reductant.
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